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Abstract. Band-structure andshear-constant (C,,) calculations have been performed for the 
Li, Na and Ba BCC phase and the Cr, Ca and Sr BCC and FCC phases within a broad range of 
mmpressions(~fromOto40-55~.Todescribethe'baiidwntributionstoC,.,useismade 
of calculations based on the linear muffin-tin orbital/atomic sphere approximation (LMTO- 
ASA) method; the other contributions to C,. are described by using the semiempirical 
'electrostatic' model. At U = 0 the calculated C,. values are usually close to the observed 
ones. We have revealed pronounced effects of softening for the shear constants, up to the 
loss of stability (C,, < 0). when the Fermi level approaches the maximum points of the 
density of states n(~), as well as under certain changes of shape of " ( P ) .  The compression 
values, at which this softening takes place, are in good agreement with the position of 
structural phase transitions under pressure. observed in the metals considered. A number 
of anomalies in the C'(W and C,( U) dependences are predicted. i n  particular a sharp drop 
of C'(LJ'J near the phase transition points U = U, in BCC Li and Ba and FCCCS. Ca and Sr. as 
well as a significant decrease of CdU)  with rising U in FCC Cs and BCC Sr at U a 0.5. 

1. Introduction 

The shear constants C,. are an important characteristic of mechanical and strength 
properties of metals. Effects of band-structure variationon these constants, in particular 
those connected with the Fermi level proximity to the singular points in the density of 
states n ( z ) ,  attract much attention. There are a number of experimental indications of 
clear manifestations of these effects in shear constants, e.g. the known anomalies of 
concentration and temperature dependences of C,. in the BCC transition metals, which 
are assigned to the band effects by many authors [l-31. The 'pre-martensitic anomalies', 
the appreciable softening of C,. in a number of metals and alloys on approaching the 
points of structural phase transitions in the pressure or concentration, are also widely 
discussed [4-91. As will be considered below, evidently this pre-martensitic softening is 
also usually attributed to the band effects. 

The development of first-principles methods for band-structure and total-energy ( E )  
calculations [10-12] made it possible to evaluate consistently and effectively the bulk 
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characteristics of metals, such as the pressurep and bulk modulus E .  At the same time, 
the quantitative calculations of the shear moduli need much more computational efforts 
and are rather scarce as yet .[13-161. Therefore, the mentioned problems of band- 
structure influence on C ,  in metals has mainly been discussed qualitatively, using 
various model approximations [I-3.17,18]. Usually, the authors proceed from the 
relations 
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where Nis the totalnumberofatoms;~istheatomicvolume;u,istheshear deformation; 
E ,  is the 'band' energy, equal to the sum of one-electron energies E~ over the occupied 
states: E,, (called for brevity the electrostatic energy) is the difference between EHad, 
the Madelung energy of ions, and U,. the terms electron-electron interaction double- 
counted in Eh; while CF3> and C:, correspond to the substitution of E = E ,  and E = E,,, 
respectively, into equation ( l a ) .  Further, it is assumed that the 'band' anomalies in C,. 
under discussionare determined mainly by the bandcontribution C!,, while in C$ these 
anomalies are insignificant. Thus Ohta and Shimizu [3] did not consider Cg, at all and 
calculated only the Ck, term (within the tight-binding and rigid-band model) while 
Ashkenazi ef a1 [ l .  21 approximated C;:, by a certain smooth function of the volume, 
A,f(Q).  with a fitting coefficient Ass.. The assumption of the insignificance of the band 
effectsin C;; seemsplausibleand.forsomemodels,it maybe justifiedformally[l7, 181. 
Dacorogna er ~l I191 made an attempt at a more formal substantiation of the 
C;;, = A,$. / (Q)  interpolation using the 'frozen muffin-tin potential' approximation 
(which doesnot change under theshear deformation) incalculating C,. within the linear 
muffin-tin orbital (LMTO) method. However, this work has been based on approxi- 
mations and not rigorous proofs, and in another calculation [I51 the above form for the 
C;:, term has not been obtained. 

The present work is aimed at a further and still more detailed investigation of the 
influence of band-structure singularities on the shear constants. We shall discuss these 
problems by using the study of the C,; dependences on pressurep in alkali and alkaline- 
earth metalsasanexample. With risingp. inall these metals (except Na) phase transitions 
occurbetween theBCCandclose-packedstructures, which werestudiedby many authors, 
see e.g. [7,2&22]. Some anomalies in the pressure dependence of the averaged shear 
modulus G(p) in polycrystalline Ba, Sr and Li were observed [e]. However, they have 
not yet been discussed theoretically. 

We study the dependences of C,. on the compression U = (Qo - Q)/Q, (where Qo 
is Q at p = 0) in the BCC and FCC phases of Li, Na, Cs. Ca. Sr and Ba and consider the 
following general problems by using these examples: 

( i )  the presence of band-structure-driven anomalies in the C,JCJ) dependences for 
the given class of metals, where they are evidently manifested still more vividly than 
those in the BCC d metals discussed earlier: 

(ii) the peculiarity of these anomalies in the case when the band-structure variation 
with changing external parameter (here, with pressure, while in an alloy it may also be 
concentration) corresponds not to the rigid-band model (considered in [l-3, 17,181) 
but to a significant change of form of n ( ~ ) .  in particular in the vicinity of the Fermi level 
e,; and 
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(iii) the connection of the band anomalies in C,. with the structural phase transitions 
and the microscopic mechanism of the presence or absence of ‘pre-martensitic softening’ 
of the shear constants. 

In the same way as in [ 1-31 on C,. in the d metals, in this work we mainly investigate 
the qualitative effects. Therefore, in our calculations we make use of approximations 
analogous to those usedearlier. Weshallcalculate the bandcontribution C t  in equation 
( lb)  by using the linear muffin-tin orbital/atomic sphere approximation (LMTO-ASA) 
method within the ‘frozen-potential’ approximation in the same way as in [15], while 
C::, will be assumed proportional to the C p d  contribution to C,. from the Madelung 
energy of point ions: C;. = ACZ!d. Thus, we shall demonstrate that for all the metals 
considered the choice of the same value of A = 5/3 usually results in a good agreement 
of the calculated C,. with the experimental values at U = 0. We have failed to obtain a 
substantiation of such a universal interpolation for the Cz, .  However, the results and 
considerations presented below allow one to assume that these relatively simple cal- 
culations of Css. by the LMTO-ASA method, combined with the above-mentioned inter- 
polation for C;:, , may be useful not only for qualitative studies of the C,. dependences 
on external parameters but also for semiquantitative estimates of the magnitudes of C,. 
themselves, at least for some classes of metals and alloys. 

In section 2 we describe the method and approximations of the calculations. The 
change with compression U of the electronic density of states n(E) in the metals under 
consideration is discussed in section 3. In section 4 we present the results of the C,,(U) 
calculations within a broad range of compressions U from U = 0 to U = 0.4G0.55. In 
the same way as in [3], we calculate C,. not only for actual values of the valence 2 (i.e. 
Z = 1 or Z = 2) but also for a whole interval of values of the effective valence N,, 
the number of occupied states in the valence band. This makes it possible to discuss 
qualitatively (within the rigid-band model) the cases of alloys as well. The presented 
results illustrate the above-mentioned points (i)-(iii). They also allow us to make a 
number of predictions about a peculiar variation of C,. with pressure in the considered 
metals. The main conclusions are summarized in section 5. 

2. Method and approximations of calculations 

For each value of the atomic volume R the electronic structure was calculated by using 
the self-consistent LMTO method within the ASA. Use was madeof the basisof orthogonal 
muffin-tin (MT) orbitals with the effective two-centre Hamiltonian determining the 
crystal energy spectrum [23]:  

H , , , , , , ~ ,  = c, + A ; ’ ~ S , ~ , ~ ~ . ( ~ ) A P  
S(k) = S(k)[l - y,S(k)]-L. 

Here C, and A, are potential parameters characterizing the centre and width of the non- 
hybridized I-band; S(k)  is the matrix of structural constants of the LMTO method and y, 
is the energy band distortion parameter [B]. The Hedin-Lundquist [24] expression was 
used for the exchange-correlation potential. The pressure p ( Q )  (presented below in 
the upper part of figures 5-9) was calculated according to the Pettifor [25] formula. In 
Li, Na, Cs, Ca, Sr and Ba the values of 143.4,254.5,747.7,293.2,379.1 and 426.9 au 
were used, respectively, for the equilibrium volumes Qo = Q( U = 0), which corresponds 
to T = 0 for alkali metals and to room temperature for alkaline-earth metals. 
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In calculating the shear constants C,$,, we proceed from the 'force theorem' [26 ] ,  as 
in 1151. According to this theorem, in the local density-functionat (LDF) approximation 
the generalized force F, corresponding to the defcrmation U, may be written as 

(3) 
Here E* are one-electron energy levels in the crystal self-consistent potential V(r);  O(x) 
is a step function equal to 1 at x > 0 and to 0 at x < 0; while ( a + &  denotes a 
derivative of E), at a 'frozen'. i.e. unchanged, potential V(r).  According to the Hellman- 
Feynman theorem, the latter may also be expressed in terms of the derivative of the 
kinetic energy operator f (entering the LDF formalism): 

( a ~ ~ / a ~ , ) , ,  = (nl af/lau, I D .  (4) 

In the second term of equation (3), p(r) is the total electric density of electrons and 
nuclei in the crystal ground state. Thus, according to equations (3) and (4), the F, force 
has the visible form of the sum of two contributions of different nature: the 'band' term 
F,b relevant to the variation of the electron kinetic energy in the quantum Fermi occu- 
pation at the deformation us, and the second, 'electrostatic' term FF connected with the 
change with U, of the classical electrostatic energy at fixed density p(r). 

According to equation ( l a ) ?  the shear constant Css, is determined by the second 
derivative a2Ejau, au,,. In this, no simple separation of contributions, analogous to 
equation (3),occursand,inaddition to the terms C:;, withderivativesat constant Vand 
the 'electrostatic' ones C $ ,  there occur Cp terms with mixed derivativesof the kinetic 
and potential energies: 

C$*, = c:, + c:. + CZt (50)  

where E), = E* - eF and rpA(r) is the one-electron wavefunction. 
In using the LMTO-ASA method. the derivatives ( l a ~ ~ / a ~ J ~  and ( a 7 E i / d u ,  au,.),. 

entering into equation (56)  are determined by variation ofonlgstructuralconstantsS(k) 
with deformation U, in the Hamiltonian (2a), while the potential parameters C,, A, and 
y,undergo no change and correspond to the self-consistent calculation in an undeformed 
crystal. This allows one to calculate these derivatives relatively easily by means of 
numerical differen tiation of the E* values obtained by diagonalization of the Hamiltonian 
H in equation ( 2 )  with S(k) corresponding to the deformed lattice. At the same time, 
the presence of mixed derivatives in equation (5c) generally speaking requires self- 
consistent calculations in the deformed lattice 1271, which are much more difficult. 
However. acalculationofthis type performed by Christensen [15]for Pdand Aushowed 
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that in the C' constant considered by him the contributions of the C z +  terms were 
negligible compared with those of the C$ term. This may reflect the smallness of 
contributions made by the non-spherically symmetrical components ofthe muffin-tin 
potential, JV/au,, to the aEA/JU,values, compared with thosemade by JTfJu, - aS(k) /  
au,. Since, in addition, in this work we are mainly interested in onlyqualitative effects, 
the C;- contributions will be omitted below. 

The quantitative calculation of the C;; term ( 5 4  also requires considerable efforts 
[15]. But proceeding from the physical considerations mentioned in section 1 one may 
assume that the band anomalies in C , ( U ) ,  in which we are interested, are determined 
mainly by the 'band' contribution C:$., while Cg, can be interpolated by a smooth 
function of the volume B. In the same way as in [19] we assume this function to be 
proportional to the Madelung contribution C!9d to the shear constant: 

C!Fd = b , .Z2eZQ-4 /3 .  (6) 
Here A is an empirical constant; Z is the valence; while 6,. are numerical coefficients 
determined by the lattice geometry only. For the C' = &(Cl, - Cl2) and C, constants 
in the BCC and FCC structures considered below, these coefficients are given in table 1. 

In calculating the band term C$ we used the procedure described in [3]. The C' 
constant corresponds to the tetragonal deformation ql. while C, corresponds to the 
trigonal one q 2 .  Their corresponding deformation matrices q1 and a2 have the form 

Ce' - - AC!Fd(Z, Q )  

5 ?'3 0 0 5 2 + 2  E 2 - 1  6 2 - 1  

8 2 - 1  E 2 - 1  g24-2 

ai = i l l 3  a2 = 95;1'3 ( E 2  - 1 E 2  + 2 52 - I 1 (7) 

where 5; = (1 + ?,)-I. If, for brevity, we use C1 to denote the C' constant and C2 for 
C4,, the explicit expressions for the C!s, in (5b) take the form 

CF(EF) = CY(EF) + C P ( E p )  

Here E , ~  is the energy of the state with quasi-momentum k in the nth band, while Cy 
and Cp" correspond to the first and second terms in the square brackets in equation (8), 
i.e. to the contributions of the states in the Fermi occupation volume and on the Fermi 
surface, respectively. If we substitute the variable E for E~ in equation (S), the function 
C ~ ( E )  scales with the density of states n ( ~ )  (differing from it only in the -9(ae,/8qi)a 
factor under the integral sign), while Cp' scales with the number of states N ( E ) ,  defined 
as 

N ( E )  = 1' dE' n(E'). (9) 

Table 1. Values of b,, coefficients in relation (6). 

Structure BCC FCC 

b' = t(b,, - b d  0.039 58 0.033 33 
bw 0.29462 0.29870 
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Therefore, the character of singularities in E (e.g. the Van Hove ones) for the Cp 
and / ? ( E )  functions, as well as for the C y  and N(E) functions, is the same; see figures 2- 
4 and 10-13 below. 

To calculate C’, we used the body-centred tetragonal (BCT) lattice, in which the 
tetragonality parameter value c/u = 1 corresponds to the BCC structure, while 
c/u = f ieorresponds to the Fccone. The C,,constant wascalculatedwithin the trigonal 
lattice, for which c/a = fdgcorrespondsto the BCC and c/u = d g t o  the Fccstructures. 
Thederivatives with respect to qiinequation(8) were found by numericaldifferentiation 
of the band energies E , , ~  over five points corresponding to steps of A(c/u) = 0.0.01 and 
0.02. In numerical integration by the tetrahedronmethod. the number of k-points in the 
irreducible part of the Brillouin zone (BZ) was taken to be 104 for the BCC and FCC 
structures. 244 for the Bmstructure and 288 for the trigonal structure, which in a11 cases 
corresponded to 3375 points in the total BZ (having the same volume 8z3/Q in all the 
structures). 

Let us discuss the A value in the interpolation (6).  It will be seen from what follows 
that for all the metals considered in this paper the choice of the same A = 5/3 value 
usually results in good agreement with the available experiments. Therefore, we shall 
use only A = 5/3 below. We now give some considerations in favour of the possibility 
that with A = 5/3 relations of the type of equation (6)  are approximately fulfilled. As 
mentioned in section 1. the E,,value in equation ( lb)  is the difference E,,, - Ucc.  If 
the CbsP term had corresponded to the  total a’E,/Ju, au,, derivative of the band energy 
Eh in equation (16) (rather than to the derivative at constant potential, as in our actual 
calculations by equation (5b) )  and if. in finding C;$ = J’E,/Ju, Ju,, in equation (Ib), 
only the purelyelectrostaticcontribution U 2  wastaken into account i n  Ucc (disregarding 
the exchange-correlation one U:: ) ,  the value A = 5/3 in equation (6) would have 
corresponded to the relation 

(J2/JU, J U , , )  E,, = (J2/JU, JU,.)  EM^ - U:) = % ( J * / a U ,  a U s * )  (10) 

Now, i f  we make use of the known estimate of the electrostatic energies in the neutral 
spherical Wigner-Seitz cell with constant electron density Z / Q  and point charge Za t  its 
centre for U:;  and EM*, in equation (10) (see e.g. 1281) then we obtain E,,, - 
U:: = SEMad. Therefore, in the absenceof differentiation inequation (lo), the approxi- 
mate fulfilment of this equality could be considered natural. We cannot prove an 
analogous relation immediately for the derivatives entering into equation (lo), nor can 
we substantiate the insignificance of the terms with aV/au, and with U:. However, the 
presented considerations allow us to  assume that the approximate fulfilment of the 
relations of the type of equation (6) with A = 5/3 is possible, at least for some classes of 
metals. 

3. Changes of electronic structure under compression and their influence on structural 
stability 

Variations of the electronic structure of the considered metals under compression are 
illustrated in figures 1 3 .  Let usdiscuss these variations. 

The n ( ~ ,  U )  dependences in the BCC Li and Na (figure 1) were considered earlier [7] 
andaregivenherefor comp1etenessofthediscussion.Thesemetalsdisplayasimple band 
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0.00 0 

Figure 1. The electron density of states f l ( ~ )  for Bcc Li and BCC Na. The vertical broken line 
here and in other figures indicates the Fermi level The full, broken and dotted curves 
correspond to the compressions U = 0.0.2 and 0.5. 

structure formed by thesandp states, with the n(&)peak at the &,point corresponding to 
the Van Hove singularity at the point N of the Bz. The AB = &c - &F distance in Na 
increases with U, in compliance with the nearly free electron (NFE) character of the band 
structure: he, - Q-2'3. Thus the / ( E )  singularity at & = does not manifest itself in the 
ground-state properties of Na. On the contrary, in Li the presence of strong, resonance- 
like attraction for the p states corresponding to the point N results in a relatively weak 
dependenceof the  valueon on compression. while the energiesof t h e ~ ~ ~ s s t a t e s  (which, 
mainly,determine the &,value) increase with Uas(Qo/Q)2:3 = (1 - U)-@. Asaresult, 
in BCC Li the AcF value drops with rising U and the Fermi level creeps over the peak in 
n(&). This causes increase in the band energy and loss of stability of the BCC phase as 
compared with the closed-packed ones (HCP, FCC, 9R; etc. [7 ] ) .  This 'band' tendency 
to structural instability is also manifested in the considerable softening of the shear 
constants; see [7,17,18] and figure 5 below. 

The variation of the band structure of Cs under pressure was discussed by many 
authors; see e.g. [21]. Our results presented in figure 2 basically agree with the previous 
ones. They describe the main feature of this variation, which is also characteristic of 
alkaline-earth metals: the decrease of the resonance d band energy relative to that of 
the s and p states (which is analogous to the situation mentioned in Li). In caesium, with 
increasing U ,  this causes the Fermi level E ,  to get into the d band and relevant structural 
phasetransitionsappear,Thus,accordingtofigure2,at U > 0.3,~~in~ccCsfal lswithin 
the pseudogap (corresponding to the vicinity of point X in the BZ). As discussed by 
Skriver [21], on further increase of U this induces the conventional 'band' mechanism 
for the transition from BCC to FCC phase, which is observed experimentally at 
U=U~'p=O.4[29].  

The results for n(&,  U) in Sr and Ba are shown in figures 3 and 4; for Ca they are 
generally similar to those for Sr. For the earlier investigated cases of FCC Ca and Sr at 
U = 0 [I21 and BCC Ba at U = 0 and U = 0.3 [22], our n(~) are close to those obtained 
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- 0  t 0.0 
I R y d l  

FigureZ. Plotrofn(E) and the number ofstates N(&) (see equation (9)) forecc and FCC Cs. 
The full, brokenanddottedcurvescorrespond ton(E)al U =  0.0.3and0.5: thechaincurve 
isN(c)atU=O. 

Figure 3. Plats ofn(E) for BCC and FCC Sr. The full. broken and dotted curves correspond to 
U=0,0.25and0.5.  

earlier. With rising U, the ahove-mentioned decrease of the energy of d states (relative 
to the s and p states) results in significant changes of the band structure, in the course of 
which cF passes a number of singular points, peaks and dips in n(~). These variations, 
illustrated by figures 3 and 4, correlate with the presence of a number of structural phase 
transitions in the alkaline-earth metals under pressure [ZO]. 

For Ba these correlations can be followed most clearly. At U = 0, eF in Ba lies 
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20 .. 

- 0 . 2  0.0 
E IRydl  

Figure4. Plotsofn(c) for BCC, Fccand HcPBa. The full, broken and dottedcurvescorrespond 
toU=O,O.Zand0.35. 

between the two peaks of n(&)  (having mainly d symmetry) and with rising U these peaks 
start to get shifted to  the left. At small U 5 0.3, eF in  the BCC phase still lies in the vicinity 
of the n(&) minimum, while in the FCC and HCP ones it lies near its maximum, which 
evidently determines the observed stability of the BCC phase at small U. However, at 
U > 0.3, E~ in the BCC phase (as in the FCC one) turns out to be in the vicinity of the 
maximum, while in the HCP one it is close to the n(&) minimum. In addition, the broad 
peak of occupied states in the HCP phase has somewhat lower energy than that in the BCC 
phase. Apparently, it is the resulting ‘band’ gain in the energy that induces the structural 
BCC-HCP transition (which i s  observed in Ba at UpP = 0.32 IS]). 

In Sr (and Ca) at U = 0, cF lies lower than the main n ( ~ )  peak corresponding to the 
hybridized d and p states. With rising U the d states of this peak are mainly shifted to 
theleft, whilethepstatesareshiftedtotheright, which resultsinthecomplicatedchange 
of n ( ~ )  with U near cF in figure 3. So, for small U < 0.2, the form of n(&) at E < eF is 
similar in the FCC and BCC phases, so that the study of their energetic preference requires 
quantitative calculations (see e.g. [21]). However, at U 3  0.2. in FCC Sr PI(+) starts to 
increasesharplydue to .cFcreepingover then(€) peak, w,hileforthe BCCphase  remains 
at then(&) minimum. This correlates with the presence of the FCC-BCC transition in Sr 
at UpP = 0.2 [6]. For Ca the creeping of eF over the n(E) peak takes place at larger U, 
which correlates with the larger value of UPP = 0.38 for the FCC-BCC transition in Ca 

In the next section we shall show that the discussed n(&) variations also cause sharp 
anomalies in the shear constants CJU), in particular in the vicinity of the points of the 
structural phase transitions. 

1201, 

4. Variation of shear constants under pressure 

In figures 5-9 we present the calculated C,,(U) dependences for the BCC or FCC 
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Figure 6. The shear constants i n  BCC Ba versus U. The notation is the same as in figure 5 for 
Li. Experimental G(L7 are taken from 14). The arrow in figures 6 9  indicate the exper- 
imental phase transition points U = U- 

phases of Li, Na, Cs. Ca, Sr and Ba, together with the available experimental data. In 
these figures the experimental C, ( U  = 0) for alkali metals correspond to T = 0 and are 
taken from table 1 in [30], while for the alkaline-earth metals they correspond to T = 
295 K and are taken from table 2 in [31]. The arrows on the abscissa indicate values 
U = U:XP of the structural phase transition points (for the lower-pressure phase). For 
Li. at T = 0 the 9R phase is the equilibrium phase instead of the BCC one. while at room 
temperature the transition from the BCC to that (or another) phase occurs at U:'? = 
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2: PBU 
0 5 

0 5 

U 

Figure7.TheshearconstanlsinSrvenua U.Theopensymbolsmrrespondto1he~ccphase; 
the full ones to the FCC phase. Experimental G(U) are taken from [SI. 

0.0 0.2 0. I ,  

U 
Figure S. The same as figure 7 but for Ca. 

0.3 [7]. Note also that the results for n(&) and C'(U) in Na and Li, given in figures 1 and 
5, differ somewhat from those in figures 6 and 7 of [7] due to some changes in details of 
calculations in the present work (the choice of another approximation for Vxc(r) ,  the 
increased number of k-points in integration over the Bz, etc). 

Figures 10-13 illustrate the form of various contributions, CF;, C$ and 
C:s, = C:; + C$ to the total Css,. Insteadofthe C$ ( E ~ )  valuesdeterminedbyequation 
(8), we (in the same way as Ohta and Shimizu [3]) present the CL, (Nv)  functions of the 
numberofoccupiedstatesin thevalence band, N ,  = N(+) ,  with N ( e )  given byequation 
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Figure 10. The different contributions to the shear constant C'(W in BCC Ba: (a )  U = 0: (b)  
U = 0.2: (c) U = 0.35. Here and in figures 11-13 the dotted. chain, broken and full curves 
correspond to the terms CE.. C%, Ck, and C:!"' = CL. t Cz,, respectively. The term C;:. 
is calculated according 10 equation (6). subatituting N ,  for Z. 

(10). For the pure metals discussed in this paper N ,  is their valence 2, i.e. 1 or 2.  
However, the consideration of arbitrary N,  # Zallows us to follow the evolution of the 
bandsingularities in C)$, with N, and to obtain qualitative information (in the rigid-band 
approximation) on the character of the C,. variation in alloys, e.g. Ba-Cs or Ba-La. 
The correspondence of the e values in figures 2-4 with N, in figures 1&13 is illustrated 
by the curve N(F) = N,(F) in figure 2. 

Finally, figures 14 and 15 illustrate the dependence of total C,. = Ck, + Cz, on two 
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'=  0.5. 

2 N, [electronlotoml 
0 

Figure 12. The same as figure 11 but for Ce in BCC Sr. 

parameters, the compression U and number of electrons N,. Here C g  is calculated 
according to equation (6) substituting N ,  for 2, in compliance with the mentioned 
possibility of applying the results to alloys. The lower part of these figures also illustrates 
theconnectionof theanomaliesin C,. with the proximity of cF to thevanHovesingularity 
points. 

Let us discuss the results presented. Note first, that at U = 0 the calculated C,. 
values in figures 5-8 are usually in good agreement with the observed ones. But for BCC 
Cs using Z = 1 in equation (6) yields C,, = 0.8 and C' = 0.03 GPa instead of the 
experimental values of 1.6 and 0.22, respectively. However, if in calculating the elec- 
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trostatic contribution (6) one allows for the noticeable overlap of the ion cores in Cs 
and, instead of the nominal valence 2 = 1, one uses, e.g. the value of 2, = 1.123 
proposed for Cs by Dacorogna ef ai [19] (they estimated this value from the relation for 
the electron density in the interstitial space, @(S) = Zo/B, where v ( S )  is the electron 
wavefunction value within the LMTO-ASA approximation at the Wigner-Seitz boundary), 
onehasC4 = 1.4andC' = 0.11 GPa.Takingintoaccountthestrongcompensationfor 
the(C')e'= C:,and(C')b = C;,contributionsinCs(Cb = -0.26GPa),theagreement 
with experiment can now be considered to be satisfactory. Thus, to describe C,. in Cs 
more realistically, the C:, values for Cs presented in figures 6 and 13 were calculated at 
Z =  Z0= 1.123inequation(6). 

At U = 0 thccomparisonofthecalculationswith the dataonaveragedshearconstants 
G(U) in polycrystalline Ba, Sr and Li [4-6] is hindered by the known uncertainty in the 
connection of this G with the C' and C4 valuesfor anisotropic crystals. However, note 
that the calculated values of compressions U = U, corresponding to the sharp decrease 
or vanishing of one or both shear constants C,. in figures 5-9 turn out, as a rule, to be 
close to the observed phase transition point values UpP = U,. Only for Li is the cal- 
culated (with recalculation to the room-temperature value B = Q(T = T, = 295 K))  
U, = 0.25 somewhat underestimated as compared with the V,(T,) = 0.3. Apparently, 
this reflects the general underestimation of our calculated C' for Li. However, for the 
C,. values in Li the temperature and zero-point motion effects disregarded by us can be 
important [7.32]. 

Figures 10-13 illustrate the relative importance and character of the CF; and CF$ 
contributions to the total band C$. One can see, in particular, that the 'Fermi surface' 
C $  terms are often the main ones and that they change with A', or with E in much the 
sameway(andoppositelyinsign)asthedensityofstatesn(E)infigures2-4,incompliance 
with the mentioned analogy between these quantities. However, the C:$- function 
variations (e.g. near the points of the n ( ~ )  singularities) are usually much sharper than 
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Figure 14. The upper part presents the function C'(N,. (i) and the lower part the ( N v ,  U) 
planeforBccBa.Inthe(h'~., L~planethefullcurvescorrespondtotheequationC'(N,, U) = 
0; the broken curves with index i denote the trajectories of the Van Hove singularities 
corresponding io  point i in the BZ, and those with index i ,  j to 'accidental' (being not 
symmetry-induced) Van Hove points belonging to line i j in the BZ. 

those inn(&). This reflects the importance of the geometricaleffectsof the Fermisurface 
form variation in anisotropic characteristics such as the shear constants [17,18]. 

Letusdiscuss the C,.(V) dependencesforseparatemetals. For Na thesedependences 
presented in figure 5 are close to those calculated within the pseudopotential per- 
turbation theory [7] and for U 6 0.1 they are also close to the experimental C,s,( U) [32]. 
Here the C,. grow smoothly and monotonically with U, which reflects the absence of 
singularities in n(&) at E S E ~ .  On the contrary, in BCC Li, E~ with rising U approaches 
the &<point of then(&) peak, and the structural stability decrease connecied with that 
manifests itself in a sharp drop of the C' constant (which related to the Bcc-close packed 
phase transitions). i t  is seen from table 2 that this decrease of C' in Li is entirely 
determined by the Fermi surface band contribution CL,, which changes most sharply 
with decreasing - E,. In the CM constant in Li this softening (at small U S  0.25) 
manifests itself much more weakly, though being displayed in the form of negative 
curvature of the CM(U) function (unlike Na where this curvature is positive). The 
discussed band effects also account for the known considerable overestimation of the 
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Fi!grr 15. The same a5 figure 14 bul for C' in -SI. 

values of the dC,,./dp derivatives for Li in the pseudopotential perturbation theory 
calculations [30]. 

Variation of the C,$, with U for Ba (figures 6 ,  10 and 14) is more complicated than 
for Li, in compliance with the more complicated change of the band structure. Table 2 
shows that here also the main change of C'  is usually determined by the surface term 
Cg. However,in transition from U = 0.2to U = 0.25. thegreat SC;, change isrealized 
at a relatively small SC;,. One can see from figure 4 that the n(&) variation in this case 
is mainly connected with changing shape of the occupied d peak, i.e. it occurs mainly in 
the volume rather than on the surface of Fermi occupation; this results in precisely the 
I SC;, I s I SCg 1 values. This example, as well as others to be discussed below, shows 
that if the change in the electronic structure with external parameters (pressure, con- 
centration in an alloy, etc) corresponds with a considerable change of n ( ~ )  at E < + 
(unlike the rigid-band model), this can also sharply vary the atomic (in particular, the 
elastic) properties. This can explain, for example, the unusual concentration anomalies 
of the strength properties of the Fe,Cr, -I alloys in which the band structure varies with 
x in an appreciably 'not rigid' way [33]. 

The resultsforbin table2alsoillustrate thementionedenhancementofsingularities 
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in the band contribution C $  as compared with those in n(EF). Thus, in transition from 
U = 0.2 to U = 0.3, the n(+) value in figure 4 increases by only 2C-25%, while the 
(-Cg) term increases by almost a factor of 5. Figures 10 and 14 also show that the loss 
of stability for BCC Ba a t  U 3 0.3 is connected with E~ approaching the point e, cor- 
responding to the states near the point N in the BZ, as in the BCC Li case. However, in 
Ba the d-type states (rather than the p-type ones, as in Li) are 'critical', for which a 
numberofflat E~branchesinthesz,suchas, e.g. theN-Pbranch [2?.],arecharacteristic. 
The result is a sharper singularity of the n(+) and CE, functions than in Li, and 
correspondingly a sharper decrease of the C'( cr) in figure 6 when U approaches U<, 

The results for C,,(U, N J  in Sr and Ca are qualitatively similar and mainly differ in 
quantitative details. Figures 7 and 8 show, first, that our Cs, calculations for the BCC and 
FCC phases correlate well with the data on the structural stability of Sr and Ca. It is seen 
that, at U < U,,, the experimental value for the transition from the FCC phase to the BCC 
one, the calculated C' values in the BCC phase are rather small or negative, while at 
U >  U,,, on the contrary, the C' values for the FCC phase become negative. One can 
also see that on further increase of U in BCC Sr and as it approaches the U,, point of the 
second structural transition (from BCC to a certain undetermined phase), there occurs a 
sharp drop of the CU constant, while in C'(U) the softening is less pronounced. This 
may reflect a tendency for going over into some more complicated structure, e.g. that 
of the Cs-IV type in caesium (for which we obtained an analogous drop of the calculated 
C,(U) at U > 0.4; see figure 9). 

Figures 7, 11, 12 and 15 and table 2 show that in Sr the discussed band effects in 

Table 2. Conrriburions to C'(L') constant (GPa), 
~~ 

Metal. 
structure U =  (Q, - Q)& C L  c L, CL c:, C' 

Na, 0 
BCC 0.2 

Li, 0 
BCC 0.2 

0.3 

Ba, 0 
BCC 0.1 

0.2 
0.25 
0.3 

Sr, 0 
FCC 0.05 

0.1 
0.15 
0 .2  
0.3 

St, 0 
BCC 0.1 

0.15 
0.3 

5.1 
7.2 

9.7 
13.4 
16.3 

-0.1 
-0.3 
-0.1 
-0.9 

0.1 

1.4 
1.4 
0.9 
0.6 

-3.0 
0.4 

-2.2 
-2.1 
-0.2 
-1.2 

-5.7 
-8.1 

-11.5 
-16.7 
-21.1 

-0.4 
-0.6 
-1.0 
-1.2 
-4.6 

-0.8 
-0.9 
-1.2 
-0.6 
-0.9 
-3.1 

-0.4 
-0.7 
-1.0 
-1.0 

-0.6 
-0.8 

-1.8 
-3.3 
-4.8 

-0.5 
-0.9 
- 1 . 1  
-2.1 
-4.5 

0.5 
0.5 

-0.3 
0.0 

-3.9 
-2.8 

-2.6 
-2.8 
- 1 . 1  
-2.2 

1.2 
1.6 

2.6 
3.5 
4.2 

2.4 
2.8 
3.3 
3.5 
3.9 

2.4 
2.5 
2.7 
3.0 
3.2 
3.8 

2.8' 
3.3 
3.5 
4.5 

0.6 
0.8 

0.8 
0.2 

-0.7 

1.9 
1.9 
2.1 
1.4 

-0.6 

2.9 
3.1 
2.5 
3.0 

-0.7 
1.1 

0.2 
0.4 
2.4 
2.3 
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C,,(U) manifest themselves very clearly. This is connected with the fact that a number 
of the P, points of the Van Hove singularities in n(&) are located in  the vicinity of E ~ ,  and 
the E~ - E, values vary considerably with changing U. The variations in C:$, again are 
much greater than those in n(cF). Thus, in changing Ufrom 0.05 to 0.1 in FCC Sr, when 
the energies e,(K) and EJX) of the states corresponding to the points K and X in the Bz 
get througheF(figure 15),n(~,)changesonIyby5%,while the CL valueintable2drops 
from 0.5 down to -0.3 GPa. Note that in the G(U)  dependence for polycrystalline SI. 
a certain minimum is also noticeable in figure 7 near U = 0.1, which may correspond to 
the discussed ‘band’ minimum in C‘(U). At U = 0.2 the eC(K)  energy in FCC Sr again 
passes through (figure 15). Together with the other changes in the band structure 
(figure 3) this results in a sharp drop of C‘ down to negative values, i.e. in a loss of FCC 
phase stability. 

The results for SI also illustrate the mentioned possibility of the sharp variation of 
the ‘bulk’ C$ term. This takes place in the FCC phase of Sr for C‘ close to U = 0.2, and 
inthe~ccphaseforC’closetoU=O.l5andforC~cIoseto U =  0.3-0.5.Notealsothat 
the decrease of C,,(U) at large U 3 0.5 in SI, Ca and Cs (figures 7-9 and I?) is mainly 
due to the drop of just the bulk C& contribution. For comparison, recall that in the 
calculations [3] for BCC d metals the sharpest anomaly in the C&(N,)  dependence 
(corresponding to the V-Cr alloys) was also determined by the bulk C g  contribution, 
so that such anomalies may be a sufficiently general band effect. 

The C,,.(L/) dependences for Cs presented in figures 9 and 13 differ somewhat from 
other metals. When U in the BCC phase approaches point U,, = 0.4 of the observed 
transition to the FCC phase, the C,. constants in figure 9 grow monotonically without 
any signsof softening. This reflects the smooth variationofn(E) and C$ in the Bccphase 
for U =5 Ue, (figure 2 ) .  At the same time, the decrease of U in the FCC phase from U = 
0.5 to U =z U,, causes a sharp drop of C’ down to large negative values at U = 0.3. 
Figures 2 and 13 show that this is a typical ‘band’ drop of C’ connected with the passage 
of E~ through the n ( ~ )  peak corresponding to the point X in the BZ. Thus, according to 
our calculations, the phase transition from the BCC phase of Cs under pressure is an 
cxample of a transition without pre-martensitic anomalies, while in an inverse transition 
from the FCC phase such anomalies should be clearly pronounced. It seems very inter- 
esting to verify experimentally such a peculiar asymmetry of the pre-martensitic pheno- 
mena. 

Onfurther increase ofthe ~ccCscompression, the isostructurnl‘s-d’ phase transition 
with a large jump of the volume AU = 0.04, is observed at U,, = 0.56 [29]. The appreci- 
able softening of the C, constant as U approaches U, (see figure 9) is a non-trivial 
prediction of our calculations. This softening of Cu is also a conventional band effect 
connected with cF creeping over the d peak in n(&),  and thus this effect may be not too 
sensitive to the approximations used in the calculation. 

We did not succeed in calculating the band structure and Cp,. in Cs for still greater 
U 3 0.55-0.60 relevant to the region after the s-d transition. Under these U (as well as 
at U 3 0.40 in Ba or U 3 0.55 in Sr and Ca), a noticeable overlapping of the considered 
valence electronic states with the core ones begins, both in conventional space and in 
energy. Thus, the usual approximations of the LMTO-ASA method used become inap- 
plicable. However, for U S  0.55 the methods employed seem to be sufficiently reliable. 
Therefore, the softening of the C,constants predicted by us at large U 3  0.50 in cubic 
phases of akaline-earth metals and Cs (as well as possibly of K and Rb) can be a band 
effect general for all these phases, which reflects the tendency towards phase transitions 
to complex structures, e.g. Cs-IV. 

V G Vaks et a1 
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5. Concluding remarks 

Let us make remarks about the accuracy of the methods used to estimate Css,. They are 
based on the electronic structure calculations by the LMTO-ASA method, the precision of 
whichis apparently high enough;see, e.g. [U, 261. For themetalsconsidered thisis also 
illustrated by the above-mentioned agreement of our results for n(&) and E& with those 
obtained earlier by different methods. The main errors in the calculations are evidently 
due to the neglect of the C:, contributions to equation (5) and the approximation (6) 
withA = 5/3 for C:,, the accuracy of which is generally speaking not clear. 

The results in figures 5-9 make one infer that our calculations usually somewhat 
underestimate C,. and overestimate the band effects of their softening, though at U = 
0, as mentioned, the errors are not large. Using Cs as an example, we have remarked 
that one of the reasons for underestimating C,. may be the fact that in expression (6) 
for C,:,, instead of the nominal metal valence 2, its ‘electrostatic’ value Z, should be 
substituted, which is determined by the actual value of the electron density Zo/Q in the 
interstitial space [19]. For simplicity, above we have allowed for the correction induced 
by the replacementofZwithZoinequation(6)onlyforCs(whereit isparticularlylarge) 
and disregarded the possible dependence of Zo on U.  The substitution of Zo for 2 in the 
alkaline-earth metals also somewhat increases CZ, (at U = 0 by U-20%). This may 
somewhat improve the accuracy of the total C,. description in these metals as well. 

The use of the ‘electrostatic‘ 2, value in equation (6) instead of the nominal Z may 
turn out to be particularly important for transition metals. To verify that, we have 
applied the estimate (6) to the case of the C‘ constant in Pd and Au, which have been 
treated in detail by Christensen [15]. His thorough and consistent calculations yielded 
the C& value of 36 GPa in both Pd and Au. At the same time, the relation (6) with A = 
5/3 and the Zo and Q values from 1191 (Z,(Pd) = 3.19, Zo(Au) = 3.43, Qpd = 99.3 au, 
Q,, = 113.3 au) yields 36.2 and 35.1 GPa for C(, in Pd and Au, respectively. Such a 
close agreement may, of course, be accidental. However, it may also corroborate the 
above considerations about the ‘electrostatic’ meaning of Z = Zoin equation (6), as well 
as the possibility of using the estimate (6) also for other metals. 

Let us now discuss the physical results of the work. Of most interest seems to be the 
relation between certain changes of the band structure and those of the shear constants, 
in particular their pre-martensitic softening near structural phase transition points. In 
all the metals considered (except the BCC Cs) the proximity of the compression U to the 
transition point U, is accompanied by the ‘band’softeningof one or both shear constants, 
and usually this softening is connected with the fact that the Fermi level cF approaches 
the peak or another maximum of the density of states n(E). A similar connection was 
noted in the literature for a number of other systems, e.g. Ni-Ti alloys and A-15 type 
systems. At the same time, the absence of such singularities in the band-structure 
evidently results in the absence of the mentioned anomalies, which was illustrated 
above by the BCC Cs case. In this connection one may assume that the closeness of eF to 
the peak or another singular n(&)  point (or the absence of such closeness) precisely 
determines the presence (or absence) of lattice softening near the structural phase 
transition points in metals and alloys. The theoretical and experimental verification of 
this hypothesis seems important for microscopic understanding of the nature of pre- 
martensitic phenomena, which until now have been discussed mainly phenom- 
enologically (see e.g. 18.91). 

The results of this work also illustrate the fact that the sF proximity to the singular 
n(.) pointscauses thegreatest lability,i.e. the variabilityofthe C,, constantsonchanging 
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external parameters. Earlier this was remarked for models of the rigid-band type in [l- 
3,17 ,  IS]. 

Finally, the concrete predictions of anomalies in the C,.(U) dependences for the 
considered metals also seem significant. The most interesting seem to be the sharp 
softening of the C'constant on both sides (in pressurep) of the FCC-BCC transition point 
in Sr and Ca. the presence of a similar C' softening in Cs with decreasingp in the FCC 
phase and its absence with risingp in the BCC phase, as well as the presence (under high 
compressions U > 0.45) of appreciable softening of the C, constant in B c c  Sr and FCC 
Cs. The experimental verification of these predictions seems to be important for the 
development of adequate ideas about the influence of eiectronicstructure on the proper- 
tiesof metals. 
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